- Introduced a comprehensive configuration template (config-adaptive.toml) for adaptive I/O, enabling improved upload/download dual stack with various performance optimizations, security settings, and network resilience features. - Created a test configuration template (test-config.toml) mirroring the adaptive configuration for testing purposes. - Added a simple test configuration (test-simple-config.toml) for basic adaptive features testing with essential parameters. - Included an empty Jupyter notebook (xep0363_analysis.ipynb) for future analysis related to XEP-0363.
7.6 KiB
7.6 KiB
Upload/Download Dual Stack Improvements
Current State Analysis
The HMAC file server has a multi-layered upload/download system with:
- Standard POST uploads (
handleUpload
) - Legacy PUT uploads (
handleLegacyUpload
) - Chunked/resumable uploads (
handleChunkedUpload
) - Network resilience management
- Simple download handler with buffer pooling
- 32KB buffer pool for I/O operations
Key Issues Identified
1. Buffer Size Limitations
- Current: Fixed 32KB buffer size
- Issue: Too small for modern high-bandwidth connections
- Impact: Suboptimal throughput on fast networks
2. Inconsistent I/O Patterns
- Current: Different handlers use different copying strategies
- Issue: Code duplication and inconsistent performance
- Impact: Maintenance burden and varying user experience
3. Limited Adaptive Optimization
- Current: Static configuration for most parameters
- Issue: No runtime adaptation to network conditions
- Impact: Poor performance in varying network conditions
4. Missing Progressive Enhancement
- Current: Basic chunked uploads without intelligent sizing
- Issue: Fixed chunk sizes regardless of network speed
- Impact: Inefficient for both slow and fast connections
Proposed Improvements
1. Adaptive Buffer Management
// Enhanced buffer pool with adaptive sizing
type AdaptiveBufferPool struct {
pools map[int]*sync.Pool // Different sizes
metrics *NetworkMetrics
currentOptimalSize int
}
func NewAdaptiveBufferPool() *AdaptiveBufferPool {
return &AdaptiveBufferPool{
pools: map[int]*sync.Pool{
32*1024: {New: func() interface{} { buf := make([]byte, 32*1024); return &buf }},
64*1024: {New: func() interface{} { buf := make([]byte, 64*1024); return &buf }},
128*1024: {New: func() interface{} { buf := make([]byte, 128*1024); return &buf }},
256*1024: {New: func() interface{} { buf := make([]byte, 256*1024); return &buf }},
512*1024: {New: func() interface{} { buf := make([]byte, 512*1024); return &buf }},
1024*1024: {New: func() interface{} { buf := make([]byte, 1024*1024); return &buf }},
},
currentOptimalSize: 32*1024,
}
}
2. Unified I/O Engine
// Unified streaming engine for uploads and downloads
type StreamingEngine struct {
bufferPool *AdaptiveBufferPool
metrics *PerformanceMetrics
resilience *NetworkResilienceManager
}
func (se *StreamingEngine) StreamWithAdaptation(
dst io.Writer,
src io.Reader,
contentLength int64,
sessionID string,
) (int64, error) {
// Adaptive buffer selection based on:
// - Network speed
// - Content length
// - Historical performance
// - Available memory
}
3. Intelligent Chunk Sizing
// Dynamic chunk size calculation
func calculateOptimalChunkSize(
fileSize int64,
networkSpeed int64,
latency time.Duration,
reliability float64,
) int64 {
// For high-speed, low-latency networks: larger chunks
if networkSpeed > 100*1024*1024 && latency < 50*time.Millisecond {
return min(fileSize/10, 10*1024*1024) // Up to 10MB chunks
}
// For mobile/unreliable networks: smaller chunks
if reliability < 0.8 || latency > 200*time.Millisecond {
return min(fileSize/50, 512*1024) // Up to 512KB chunks
}
// Default balanced approach
return min(fileSize/20, 2*1024*1024) // Up to 2MB chunks
}
4. Progressive Download Enhancement
// Enhanced download with range support and adaptive streaming
func handleDownloadEnhanced(w http.ResponseWriter, r *http.Request) {
// Support HTTP Range requests
rangeHeader := r.Header.Get("Range")
if rangeHeader != "" {
// Handle partial content requests
return handleRangeDownload(w, r, rangeHeader)
}
// Adaptive streaming based on client capabilities
userAgent := r.Header.Get("User-Agent")
connectionType := detectConnectionType(r)
// Use appropriate buffer size and streaming strategy
streamingEngine.StreamWithClientOptimization(w, file, fileInfo.Size(), userAgent, connectionType)
}
5. Performance Monitoring Integration
// Enhanced metrics for optimization feedback
type StreamingMetrics struct {
ThroughputHistory []ThroughputSample
LatencyHistory []time.Duration
ErrorRates map[string]float64
OptimalBufferSize int
ClientPatterns map[string]ClientProfile
}
type ClientProfile struct {
OptimalChunkSize int64
PreferredProtocol string
ReliabilityScore float64
AverageThroughput int64
}
Implementation Plan
Phase 1: Buffer Pool Enhancement
- Implement adaptive buffer pool
- Add performance monitoring
- Create buffer size optimization algorithm
Phase 2: Unified I/O Engine
- Create common streaming interface
- Migrate all handlers to use unified engine
- Add network condition awareness
Phase 3: Intelligent Chunking
- Implement dynamic chunk sizing
- Add client-specific optimizations
- Create predictive algorithms
Phase 4: Advanced Features
- Add HTTP Range support
- Implement connection multiplexing
- Add client capability detection
Configuration Enhancements
[performance]
# Buffer management
adaptive_buffers = true
min_buffer_size = "32KB"
max_buffer_size = "1MB"
buffer_optimization_interval = "5m"
# Chunking strategy
intelligent_chunking = true
min_chunk_size = "256KB"
max_chunk_size = "10MB"
chunk_adaptation_algorithm = "adaptive" # "fixed", "adaptive", "predictive"
# Client optimization
client_profiling = true
profile_persistence_duration = "24h"
connection_type_detection = true
[streaming]
# Progressive enhancement
range_requests = true
connection_multiplexing = false
bandwidth_estimation = true
quality_adaptation = true
# Resilience features
automatic_retry = true
exponential_backoff = true
circuit_breaker = true
Expected Benefits
Performance Improvements
- Throughput: 30-50% improvement on high-speed connections
- Latency: Reduced overhead through adaptive buffering
- Reliability: Better handling of network issues
Resource Efficiency
- Memory: Dynamic allocation based on actual needs
- CPU: Reduced copying overhead
- Network: Optimal utilization of available bandwidth
User Experience
- Resumability: Enhanced chunked uploads
- Responsiveness: Adaptive to client capabilities
- Reliability: Better error handling and recovery
Compatibility Considerations
- Maintain backward compatibility with existing APIs
- Gradual migration path for existing clients
- Feature detection for progressive enhancement
- Fallback mechanisms for legacy clients
Monitoring and Observability
// Enhanced metrics for the dual stack
type DualStackMetrics struct {
// Upload metrics
UploadThroughput prometheus.Histogram
ChunkUploadSize prometheus.Histogram
UploadLatency prometheus.Histogram
UploadErrors prometheus.Counter
// Download metrics
DownloadThroughput prometheus.Histogram
RangeRequests prometheus.Counter
DownloadLatency prometheus.Histogram
DownloadErrors prometheus.Counter
// Buffer metrics
BufferUtilization prometheus.Gauge
OptimalBufferSize prometheus.Gauge
BufferSizeChanges prometheus.Counter
// Network metrics
NetworkSpeed prometheus.Gauge
NetworkLatency prometheus.Gauge
NetworkReliability prometheus.Gauge
}
This comprehensive improvement plan addresses the current limitations while maintaining the existing functionality and adding significant performance and reliability enhancements.